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We determine how the differences in the treatment of the subfilter-scale physics affect the properties
of the flow for three closely related regularizations of Navier–Stokes. The consequences on the
applicability of the regularizations as subgrid-scale �SGS� models are also shown by examining
their effects on superfilter-scale properties. Numerical solutions of the Clark-� model are compared
to two previously employed regularizations, the Lagrangian-averaged Navier–Stokes �-model
�LANS-�� and Leray-�, albeit at significantly higher Reynolds number than previous studies,
namely, Re�3300, Taylor Reynolds number of Re��790, and to a direct numerical simulation
�DNS� of the Navier–Stokes equations. We derive the de Kármán–Howarth equation for both the
Clark-� and Leray-� models. We confirm one of two possible scalings resulting from this equation
for Clark-� as well as its associated k−1 energy spectrum. At subfilter scales, Clark-� possesses
similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier–
Stokes, but exhibits greater intermittency. As a SGS model, Clark-� reproduces the large-scale
energy spectrum and intermittency properties of the DNS. For the Leray-� model, increasing the
filter width � decreases the nonlinearity and, hence, the effective Reynolds number is substantially
decreased. Therefore, even for the smallest value of � studied Leray-� was inadequate as a SGS
model. The LANS-� energy spectrum �k1, consistent with its so-called “rigid bodies,” precludes a
reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large
reduction in numerical resolution. We find, however, that this same feature reduces its intermittency
compared to Clark-� �which shares a similar de Kármán–Howarth equation�. Clark-� is found to be
the best approximation for reproducing the total dissipation rate and the energy spectrum at scales
larger than �, whereas high-order intermittency properties for larger values of � are best reproduced
by LANS-�. © 2008 American Institute of Physics. �DOI: 10.1063/1.2880275�

I. INTRODUCTION

Nonlinearities prevail in fluid dynamics when the
Reynolds number Re is large.1 For geophysical flows, the
Reynolds number is often larger than 108 and for some as-
trophysical flows values of Re�1018 is not unreasonable.
The number of degrees of freedom �dof� in the flow in-
creases as Re9/4 for Re�1 in the Kolmogorov framework2–4

�hereafter, K41�. Such a huge number of dof makes direct
numerical simulations �DNS� of turbulence at high Re infea-
sible on any existing or projected computer for decades to
come. Because of this intractability, simulations of turbu-
lence are always carried out in regions of parameter space far
from the observed values, either with �a� an unphysical lack
of scale separation between the energy-containing, inertial,
and dissipative ranges while parametrizing the missing phys-
ics, or �b� a study of the processes at much smaller length
scales, often with periodic boundaries �unphysical at large
scales but used under the hypothesis of homogeneity of tur-

bulent flows�. Clearly, modeling of unresolved small scales is
necessary.

Given the nonlinear nature of turbulent flows and the
ensuing multiscale interactions, the physics of the unresolv-
able scales may not be separable from the properties �e.g.,
statistics� of the resolvable large scales. However, two main
approaches have been developed over the years to model the
effects of the unresolvable small scales in turbulence on the
scales resolved in the simulations. The first approach is large
eddy simulations5 �LES�. LES is widely used in engineering,
in atmospheric sciences, and to a lesser extent in astrophys-
ics. However, in the LES approach, the Reynolds number is
not known. Instead, one attempts modeling the behavior of
the flow in the limit of very large Re. As the Kolmogorov
assumption of self-similarity is known to be violated �e.g.,
by intermittency6,7 and by spectral nonlocality8�, the value of
Re can play an important role; e.g., in the competition be-
tween two or more instabilities.9 Therefore, another approach
models the effects of turbulence at higher Reynolds numbers
than are possible with a DNS on a given grid, by using a
variety of techniques that can be viewed as filtering of the
small scales �the so-called subgrid-scale �SGS� models�.
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A rather novel approach to modeling of turbulent flows
employs regularization modeling as a SGS model.10–15 Un-
like closures that employ eddy-viscosity concepts �modify-
ing the dissipative processes�, the approach of regularization
modeling modifies the spectral distribution of energy. For
this reason, they retain a well-defined Reynolds number. Ex-
istence and uniqueness of smooth solutions can be rigorously
proven, unlike many LES models �e.g., eddy-viscosity�, as
well as the fact that the subgrid model recovers the Navier–
Stokes equations in the limit of the filter width going to zero.
Their robust analytical properties ensure computability of so-
lutions. These same properties reopen theoretical possibili-
ties first explored by Leray when he proved the existence
�but not smoothness or uniqueness� of solutions to the
Navier–Stokes equations in Ren �n=2,3� using the Leray
model.16 This treatment of the small scales, then, enforces a
precise type of regularization of the entire solution, which
may be studied as an independent scientific question �as
compared to either LES or SGS modeling�.

Geurts and Holm11,12,15 began using the Leray model
with �a three-point invertible approximation of� an inverse-
Helmholtz-operator filter of width �. Later it was dubbed
Leray-�, and an upper bound for the dimension of the global
attractor was established.14 The global existence and unique-
ness of strong solutions for the Leray model is a classical
result.16 Leray-� has been compared to DNS simulations on
a grid of N3=1923 in a doubly periodic compressible channel
flow domain.11,12,15 Its performance was found to be superior
to a dynamic mixed �similarity plus eddy-viscosity� model
�with an even greater reduction in computational cost�. How-
ever, it possessed a systematic error of a slight over-
prediction of the large scales accompanied by a slight under-
prediction of the small scales. It possessed both forward- and
backscatter, but exhibited too little dissipation.

The Leonard tensor-diffusivity model17 �sometimes
known as the Clark model18� is the first term of the recon-
struction series for the turbulent subfilter stress for all sym-
metric filters that possess a finite nonzero second moment.
This leading order approximation of the subgrid stress is thus
generic.19,20 In a priori testing, it reconstructs a significant
fraction ��90%, but not all� of the subgrid stress, provides
for local backscatter along the stretching directions while
remaining globally dissipative, and possesses a better recon-
struction of the subgrid stress than the scale-similarity
model. Used as a LES, in a posteriori testing the Leonard
tensor-diffusivity model required additional dissipation �a
dynamic Smagorinsky term� to achieve reasonable gains in
computation speed for three-dimensional �3D� periodic flows
and for channel flows.19 The Leonard tensor-diffusivity
model does not conserve energy in the nonviscous limit.
Cao, Holm, and Titi21 developed a related �conservative�
subgrid model that they dubbed Clark-�. The Clark-� model
applies an additional inverse-Helmholtz filter operation to
the Reynolds stress tensor of the Clark model. The global
well-posedness of the Clark-� model and the existence and
uniqueness of its solutions were demonstrated, and upper
bounds for the Hausdorff �dH� and fractal �dF� dimensions of
the global attractor were found.21 This model has yet to be
evaluated numerically.

The third regularization model we will consider is
the incompressible Lagrangian-averaged Navier–Stokes
�LANS-�, �-model, also known as the viscous Camassa–
Holm equation22–24,10,25�. It can be derived, for instance, by
applying temporal averaging to Hamilton’s principle, where
Taylor’s frozen-in turbulence hypothesis �the only approxi-
mation in the derivation� is applied as the closure for the
Eulerian fluctuation velocity in the Reynold decomposition,
at linear order in the generalized Lagrangian mean
description.26–28 In this derivation, the momentum-
conservation structure of the equations is retained. For scales
smaller than the filter width, LANS-� reduces the steepness
in gradients of the Lagrangian mean velocity and thereby
limits how thin the vortex tubes may become as they are
transported, while the effect on larger length scales is
negligible.10 LANS-� may also be derived by smoothing the
transport velocity of a material loop in Kelvin’s circulation
theorem.29 Consequently, there is no attenuation of resolved
circulation, which is important for many engineering and
geophysical flows where accurate prediction of circulation is
highly desirable. An alternative interpretation of the �-model
is that it neglects fluctuations in the smoothed velocity field,
while preserving them in the source term, the vorticity.30

LANS-� has previously been compared to direct nu-
merical simulations �DNS� of the Navier–Stokes equations at
modest Taylor Reynolds numbers �Re��72,31 Re��130,10

and Re��30014�. LANS-� was compared to a dynamic
eddy-viscosity LES in 3D isotropic turbulence under two
different forcing functions �for Re��80 and 115� and for
decaying turbulence with initial conditions peaked at a low
wavenumber �with Re��70� as well as at a moderate wave-
number �with Re��220�.32 LANS-� was preferable in these
comparisons because it demonstrated correct alignment be-
tween eigenvectors of the subgrid stress tensor and the eigen-
vectors of the resolved stress tensor and vorticity vector. The
LES effectiveness of the LANS-� and the Leray-� regular-
ization models relative to eddy-viscosity and the dynamic
mixed model �similarity plus eddy-viscosity� have already
been demonstrated in a turbulent mixing shear layer �with
Re�50�.33,15 LANS-� was found to be the most accurate of
these three LES candidates at proper subgrid resolution, but
the effects of numerical contamination can be strong enough
to lose most of this potential. While LANS-� has the greatest
grid-independent accuracy of the three models, it also re-
quires the greatest resolution. From the LES perspective, this
could pose some limitations on the practical use and appli-
cation of LANS-� for high Re cases. Indeed, recent high-
resolution simulations of LANS-� showed that energy artifi-
cially accumulates in the subfilter scales, giving as a result
only a modest computational gain at very high Reynolds
number.34

We propose to pursue these previous studies of Leray-�
and LANS-� further at higher Reynolds number, and to use
them as a benchmark for evaluation of Clark-�. One goal is
to contrast the subfilter-scale physics of the three models to
determine the relevant features from which to build im-
proved models. As the three regularizations are related via
truncation of subfilter stresses, such a comparison can be
illuminating. For LANS-�, the predicted subfilter-scale spec-
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tra is �k−1.29 This scaling has been observed to be subdomi-
nant to an energy spectrum �k1, which corresponds to
“enslaved rigid body” or “polymerized” portions of the
fluid.34 The subfilter scaling observed in the third-order
structure function corresponded to the predicted �k−1 scal-
ing of the energy spectrum. However, regions were observed
in the flow where no stretching was acting in the subfilter
scales. These regions, which give no contribution to the en-
ergy cascade, and hence do not affect the third-order struc-
ture functions, are responsible for the �k1 scaling in the
LANS-� energy spectrum. For Clark-�, the correct time
scale for vortex stretching is difficult to determine and its
spectrum is found to range between �k−1 and �k−7/3.21

Leray-� has the same difficulty and the spectrum can range
between �k−1/3 and �k−5/3.14 The determination of these
scaling laws is needed to quantify the computational gain if
each model is to be used as a SGS model. As a result, we
seek to determine empirically the subfilter-scale spectra. Our
second goal is to evaluate the applicability of these three
regularizations as SGS models. This is accomplished both
through prediction of computational gains from observed
subfilter-scale properties and through directly testing their
capability to predict superfilter-scale properties at high Re.

We present the three models and describe how they are
related, derive the de Kármán–Howarth equation for Clark-�
and Leray-� �from which exact scaling laws for third order
quantities follow�, and review theoretical predictions of iner-
tial range scaling in Sec. II. We examine the subfilter-scale
properties of the three regularizations in Sec. III. We first
compute a fully resolved DNS of the Navier–Stokes equa-
tions at a resolution of 10243 ��=3�10−4, Re�3300, and
Re��790�. We then perform model runs with the exact same
conditions at a resolution of 3843. We take � to be 1 /13 the
box size, which was found in an earlier study to be large
enough to exhibit both Navier–Stokes and subfilter-scale
LANS-� dynamics.34 This large filter case is important be-
cause it gives insight into the behavior of the models at
scales much smaller than the filter width without requiring
higher resolution than is feasible. We compare the three
regularizations as subgrid models in Sec. IV. Guided by a
previous study of LANS-�,34 we take � to be 1 /40 the box
size. This choice was found to produce an optimal �-LES �in
the sense of being optimal for the class of LANS-� models,
with respect to the value of ��. Finally, we review bounds on
the size of the attractors and use these bounds to comment on
the computational savings of the three regularizations viewed
as SGS models.

II. THE THREE REGULARIZATION MODELS

A. Clark-�

The incompressible Navier–Stokes equations are given
in Cartesian coordinates by

�tvi + � j�v jvi� + �iP = �� j jvi, �ivi = 0. �1�

Filtering these equations with a convolution filter, L : z→ z̄,
in which z̄ �z� denotes the filtered �unfiltered� field, yields

�tui + � j�ujui� + �iP̄ + � j�̄ij = �� j jui, �2�

in which by convention we denote ui� v̄i and the Reynolds
turbulence stress tensor, i.e., �̄ij =viv j − v̄iv̄ j, represents the
closure problem. Equation �2� can represent either a LES or
a SGS model. As the difference between the two is primarily
philosophical �e.g., the scale at which filtering is applied,
dissipative versus dispersive, the factor by which computa-
tional resolution may be decreased, etc.�, we briefly define
our terminology. Many LES include eddy-viscosity �i.e., � j�̄ij

includes a �T� j jui term such that �T���. This amounts to
approximating the �=0 problem and no finite Reynolds num-
ber can be defined. More generally, a LES applies the filter-
ing in the inertial range and reduces the necessary computa-
tional linear resolution by at least an order of magnitude.
Different from this previous case, a SGS model employs a
finite value of � �and a well-defined Reynolds number� and
addresses instead the question: For a given Re, how far can
we reduce the computational expense while retaining as
much of the detailed large-scale properties �such as the high-
order statistics� as possible? For the case of LANS-�, for
example, it has already been shown that the reduction in
computational expense is rather modest �a factor of about
30�. Therefore, while calling it a SGS model is justified by
Eq. �2�, the label LES does not really apply.

It is the case for both LES and SGS models that though
a single filtering is indicated in Eq. �2�, numerical solution
implies a second filtering at the grid resolution �see, e.g.,
Ref. 20�. Systematic studies requiring a database of com-
puted solutions have been made in the past for LES35 and for
the LANS-� regularization model.33,15,34 These studies show
that the ratio of the two filter widths �i.e., the subfilter reso-
lution� can affect greatly the model’s performance. To avoid
this complication, the subfilter resolutions employed in this
study are rather large. Determination of the optimal subfilter
resolution is a detailed study that should be undertaken for
both Clark-� and Leray-�, but is beyond the scope of this
present paper.

It has been shown19,20 that for all symmetric filters pos-
sessing a finite nonzero second moment, the first term of the
reconstruction series for the turbulent subfilter stress is

�̄ij = − � d2Ĝ

dk2 �
k=0

�kui�kuj + ¯ , �3�

where Ĝ�k� is the Fourier transform of the convolution
kernel 	G�r� is the convolution kernel, where �Lz��r�
=
G�r−r��z�r��d3r��. This approximation of the subgrid
stress is then generic and is known as the Leonard tensor-
diffusivity model17 �or, often, the Clark model18�. Related to
this model, the Clark-� model is21

�tvi + H� j�ujui� + �ip + �2� j��kui�kuj� = �� j jvi, �4�

and its subgrid stress for ��1 is given by

�̄ij
C = H−1�2��kui�kuj� = �2��kui�kuj� + O��4� . �5�

Here the filter is the inverse of a Helmholtz operator; i.e.,
L=H−1= �1−�2�2�−1. The Clark-� model conserves energy
in the H�

1�u� norm instead of the L2�v� norm,
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dE�

dt
= − 2�	�, �6�

in which the Clark-� energy E� is expressed as

E� =
1

D
�

D

1

2
�u − �2�2u� · ud3x =

1

D
�

D

1

2
v · ud3x , �7�

and the Clark-� energy dissipation rate is given by

	� =
1

D
�

D

1

2
� · �̄d3x , �8�

where �=��v and �̄=��u. For L=H−1, we note that

Ĝ= �1+�2k2�−1, which implies that the turbulent subfilter
stress tensor for the tensor-diffusivity model given by Eq. �3�
is

�̄ij
C = 2�2��kui�kuj� + ¯ , �9�

which is proportional to the Clark-� stress tensor to second
order in �. Hence, the a priori tests of19 should apply to
Clark-�, at least at this order.

1. de Kármán–Howarth equation for Clark-�

In 1938, de Kármán and Howarth36 introduced the in-
variant theory of isotropic hydrodynamic turbulence, and de-
rived from the Navier–Stokes equations the exact law relat-
ing the time derivative of the two-point velocity correlation
to the divergence of the third-order correlation function. The
corresponding de Kármán–Howarth theorem for LANS-� in
the fluid case was derived in Ref. 37. The relevance of the de
Kármán–Howarth theorem for the study of turbulence cannot
be underestimated. As a corollary, rigorous scaling laws in
the inertial range can be deduced. In this section, we derive
these results for the Clark-� case.

For the sake of simplicity, we consider the case �=0,
since the dissipative terms may be added at any point in the
derivation. We denote u��u�x� , t� and begin our investiga-
tion of the correlation dynamics by computing the ingredi-
ents of the partial derivative �t�viuj��. The Clark-� motion
equation �4� may be rewritten as

�tvi + �m�vium + uivm − uium + p
im − �2�nui�num� = 0.

�10�

Combining Eqs. �2� and �5�, we arrive at the fluctuation-
velocity equation

�tuj� + �m� �uj�um� + p̄�
 jm + �2G � � jm
C�� = 0, �11�

where �̄ij
C�H−1�2�ij

C �L=H−1�. Multiplying Eq. �10� by uj�
and Eq. �11� by vi, then adding the result yields

�tviuj�� =
�

�rm
�vium + uivm − uium − �2�nui�num�uj��

+
�

�rm
puj�
im − p̄�vi
 jm�

−
�

�rm
�uj�um� + �2G � � jm

C��vi� , �12�

where we have used statistical homogeneity

�

�rm
·� =

�

�xm�
·� = −

�

�xm
·� . �13�

We symmetrize Eq. �12� in the indices i, j by adding the
corresponding equation for �tv jui��. We then use homogene-
ity again as

viuj�um� + v jui�um� � = − vi�ujum + v j�uium� , �14�

and define the tensors

Qij
C = viuj� + v jui�� , �15�

Tijm
C = �viuj� + v jui� + vi�uj + v j�ui − uiuj� − ujui��um

+ �uiuj� + ujui��vm� , �16�

�ijm
C = �puj� − p̄�v j�
im + �pui� − p̄�vi�
 jm� , �17�

Sijm
C = ��nui�num�uj� + ��nuj�num�ui� + G � � jm

C�vi

+ G � �im
C�v j� . �18�

We can drop �ijm
C because the terms with the pressures p and

p̄� vanish everywhere, as follows from the arguments of
isotropy.36 Finally, we obtain

�tQij
C =

�

�rm
�Tijm

C − �2Sijm
C � . �19�

This is the de Kármán–Howarth equation for Clark-� �com-
pare to Eq. �3.8� in Ref. 37 for LANS-��.

By dimensional analysis, the energy dissipation rate in
Clark-� is ��

C��tQC
ij and Eq. �19� implies

�
C �

1

l
�vu2 + u3 +

�2

l2 u3� . �20�

For large scales �l���, we recover the Navier–Stokes
scaling known as the four-fifths law: �
v��l��3��l.1 Here,

v��l���v�x+ l�−v�x�� · l / l is the longitudinal increment
of v. Strictly speaking, the four-fifths law expresses that
the third-order longitudinal structure function of v, i.e.,
S3

v�l���
v��3�, is given in the inertial range in terms of the
mean energy dissipation per unit mass  by

S3
v = − 4

5l , �21�

or, equivalently, that the flux of energy across scales in the
inertial range is constant. We also recover the Kolmogorov
19412–4 �hereafter, K41� energy spectrum, i.e., E�k�k�v2

�2/3l2/3 or, equivalently,
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E�k� � 2/3k−5/3. �22�

For subfilter scales �l���, we have u�vl2 /�2 and the first
and third right-hand terms in Eq. �20� are equivalent. In this
case, we are left with two different possible scalings depend-
ing on the prefactors in Eq. �20�. If the first �or third� right-
hand term is dominant, our scaling law becomes

�
u��l��2�
v��l��� � �
Cl . �23�

For our subfilter-scale energy spectrum, we would then have
E�

C�k�k�uv���
C�2/3�2/3, or, equivalently,

E�
C�k� � ��

C�2/3�2/3k−1. �24�

This result is the same as for the �-model.29 If, however, the
second right-hand term in Eq. �20� is dominant, then the K41
results are recovered, with u substituted for v. In that case,
one finds the alternative Clark-� subfilter-scale spectral en-
ergy scaling,

E�
C�k� � k1/3. �25�

2. Phenomenological arguments for Clark-� inertial
range scaling

We review here the derivation by dimensional analysis
of the spectrum which follows the scaling ideas originally
due to Kraichnan38 and which is developed more fully in
Ref. 21. In examining the nonlinear terms in Eq. �4�, it is not
entirely clear which of three possible scales for the average
velocity for an eddy of size k−1,

Uk
�0� = � 1

D
�

D

�vk�2d3x�1/2

, �26�

Uk
�1� = � 1

D
�

D

uk · vkd
3x�1/2

, �27�

or

Uk
�2� = � 1

D
�

D

�uk�2d3x�1/2

, �28�

should result. Therefore, three corresponding “turnover
times” tk for such an eddy may be proposed,

tk
�n� � 1/�kUk

�n�� with n = 0,1,2. �29�

The term “turnover time” is used advisedly here, since only
the velocity Uk

�2� is composed of the fluid transport velocity.
We define the �omnidirectional� spectral energy density
E��k� from the relation

E� = �
0

� � E��k�d�dk = �
0

�

E��k�dk . �30�

Since uk ·uk=uk ·vk / �1+�2k2�=E��k� / �1+�2k2�, we have

Uk
�n� � �� E��k��1 + �2k2��1−n�dk�1/2

� �kE��k��1 + �2k2��1−n��1/2. �31�

The total energy dissipation rate �
C is then related to the

spectral energy density by

� � �tk
�n��−1� E��k�dk � k2Uk

�n�E��k�

� k5/2E�
C�k�3/2�1 + �2k2��1−n�/2, �32�

which yields, finally, the predicted energy spectra for
Clark-�, E�

C�k�,

E�
C�k� � ��

C�2/3k−5/3�1 + �2k2��n−1�/3. �33�

For scales much larger than � ��k�1�, the Kolmogorov
scaling for Navier–Stokes is recovered,

E�
C�k� � ��

C�2/3k−5/3, �34�

whereas for scales much smaller ��k�1�, the spectrum
becomes

E�
C�k� � ��

C�2/3�2�n−1�/3k�2n−7�/3. �35�

These arguments constrain the Clark-� subfilter-scale spec-
trum to lie between k−1 and k−7/3.

B. Leray-�

The Leray model in Cartesian coordinates is

�tvi + � j�ujvi� + �iP = �� j jvi �ivi = 0, �36�

where the flow is advected by a smoothed velocity u. By
comparison with Eq. �2� we see that the Leray model ap-
proximates the subgrid stress as �̄ij

L=L�ujvi�−ujui, or, with
L=H−1,

�̄ij
L = H−1�2��kui�kuj + �kui� juk� . �37�

As has been noted previously,13 the subgrid stress of Clark-�
in Eq. �5� is a truncation of the subgrid stress of Leray-�, in
Eq. �37�. For Leray-�, the L2�v� norm is the quadratic invari-
ant that is identified with energy,

dE

dt
= − 2�	 , �38�

where

E =
1

D
�

D

1

2
�v�2d3x �39�

and

	 =
1

D
�

D

1

2
���2d3x . �40�

As was pointed out in Ref. 39, the incompressibility of the
velocity field v only implies a divergenceless filtered veloc-
ity u under certain boundary conditions for Leray-�. When
�iui�0, the energy E= 1

2
D�v�2 is no longer conserved �helic-
ity and Kelvin’s theorem are not conserved for Leray-��. In
our numerical study, we employ periodic boundary condi-
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tions, for which �ivi=0 implies �iui=0 and Leray-� con-
serves energy in the usual sense of L2�v�.

1. de Kármán–Howarth equation for Leray-�

In this section we derive the de Kármán–Howarth equa-
tion for the Leray-� case. Following Sec. II A 1, we begin
our investigation of the correlation dynamics by computing
the ingredients of the partial derivative �t�viv j��. Equation
�36� may be rewritten as

�tvi + �m�vium + P
im� = 0. �41�

Multiplying Eq. �41� by v j� yields

�tviv j�� =
�

�rm
viumv j�� +

�

�rm
Pv j�
im� . �42�

We can make this equation symmetric in the indices i, j, by
adding the equation for �tv jvi��. We define the tensors

Qij
L = viv j� + v jvi�� , �43�

Tijm
L = �viv j� + v jvi��um� , �44�

�ijm
L = Pv j�
im + Pvi�
 jm� . �45�

Again, we may drop �ijm
L because the terms with the pres-

sure P vanish everywhere, and thereby obtain

�tQij
L =

�

�rm
Tijm

L . �46�

This is the de Kármán–Howarth equation for Leray-�.
The energy dissipation rate for Leray-� is denoted by L,

and it satisfies L��tQij
L. By dimensional analysis, Eq. �46�

implies

L �
1

l
v2u . �47�

For large scales �l���, we recover the Navier–Stokes scal-
ing �Eqs. �21� and �22��. For subfilter scales �l���, our scal-
ing law becomes

�
v��l��2�
u��l��� � Ll . �48�

For our small-scale energy spectrum, we would then
have EL�k�k�v2��L�2/3�4/3k2/3 �where we employed u
�vl2 /�2�, or, equivalently �cf. Eq. �25��,

EL�k� � �L�2/3�4/3k−1/3. �49�

2. Phenomenological arguments for Leray-� inertial
range scaling

We review here the derivation by dimensional analysis
of the spectrum for Leray-� as we did for Clark-� in
Sec. II A 2. This analysis is developed more fully in Ref. 14.
We argue again that there are three possible scales for the
average velocity for an eddy of size k−1 �Eqs. �26�–�28��,
with the turnover time tk

�n� given by Eq. �29�. Since
uk

2=vk
2 / �1+�2k2�2=E�k� / �1+�2k2�2, we have

�Uk
�n�� � �� E�k��1 + �2k2�−ndk�1/2

� �kE�k��1 + �2k2�−n�1/2, �50�

Then, the total energy dissipation rate L is then related to
the spectral energy density by

L � �tk
�n��−1� E�k�dk � k2Uk

�n�E�k�

� k5/2E�k�3/2�1 + �2k2�−n/2, �51�

which yields, finally, the predicted energy spectra for
Leray-�, EL�k�,

EL�k� � �L�2/3k−5/3�1 + �2k2�n/3. �52�

For scales much larger than � ��k�1�, the K41 spectrum is
recovered �Eq. �22��, and for scales much smaller ��k�1�,
the spectrum is

EL�k� � �L�2/3�2n/3k�2n−5�/3. �53�

These arguments constrain the Leray-� subfilter-scale spec-
trum to lie between k−1/3 and k−5/3.

C. LANS-�

LANS-� is given by

�tvi + � j�ujvi� + �i� + v j�iuj = �� j jvi, �ivi = 0. �54�

For LANS-�, the usual choice of filter is again L=H.
−1. With

this filter, the subgrid stress tensor is given by

�̄ij
� = H−1�2��mui�muj + �mui� jum − �ium� jum� . �55�

As has been previously noted,13 the subgrid stress of
Leray-�, Eq. �37�, is a truncation of the subgrid stress of
LANS-� equation �55�. Like Clark-�, energy is conserved in
the H�

1�u� norm instead of the L2�v� norm. Additionally,
LANS-� is the only model of the three examined here that
conserves a form of the helicity �and Kelvin’s circulation
theorem�.

For LANS-� in the fluid case the de Kármán–Howarth
theorem was derived in Ref. 37. We summarize here the
dimensional analysis argument for the LANS-� inertial
range scaling that follows from this theorem, beginning from
Eq. �3.8� in Ref. 37. In the statistically isotropic and homo-
geneous case, without external forces and with �=0, taking
the dot product of Eq. �54� with uj� yields the equation

�tQij
� =

�

�rm
�Tijm

� − �2Sijm
� � . �56�

The trace of this equation is the Fourier transform of the
detailed energy balance for LANS-�;

Qij
� = viuj� + v jui�� �57�

is the second-order correlation tensor, while

Tijm
� = �viuj� + v jui� + vi�uj + v j�ui�um� �58�

and
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Sijm
� = ��mul�iul�uj� + ��mul� jul�ui� + �G � � jm

���vi

+ �G � �im
���v j� �59�

are the third-order correlation tensors for LANS-� and
�̄ij

� =H−1�2�ij
� is the subfilter-scale stress tensor. For �=0 this

reduces to the well-known relation derived by de Kármán
and Howarth. The energy dissipation rate for LANS-�, i.e.,
�, satisfies ���tQij

�. By dimensional analysis in Eq. �56�
we arrive at

� �
1

l
�vu2 +

�2

l2 u3� . �60�

For large scales �l���, we recover the Navier–Stokes scal-
ing equations �21� and �22�. For subfilter scales �l��� our
scaling law becomes Eq. �23� and our subfilter-scale spectra
are given by

E��k� � �
2/3�2/3k−1. �61�

In this case, by the phenomenological arguments, we know
that eddies of size k−1 are advected by the smoothed velocity
�Eq. �28��. This scaling is confirmed in Ref. 34, but it coex-
ists with a k1 energy spectrum corresponding to “enslaved
rigid bodies” or “polymerized” portions of fluid that do not
contribute to the turbulent energy cascade.

III. SUBFILTER-SCALE PHYSICS

Only by examining the subfilter scales can we hope to
derive new, improved models, and, ultimately, to gain an
understanding of turbulence. A knowledge of the differences
between closures and Navier–Stokes is fundamental to en-
able the derivation of better physical models of turbulence at
small scales. In this section, then, we will be interested in
both the similarities and the differences between the regular-
izations and Navier–Stokes. A more immediate goal of pre-
dicting the computational savings at higher Reynolds num-
bers can be achieved through the correct prediction of the
scaling at small scales.

To this end, we compute numerical solutions to Eqs. �1�,
�4�, �36�, and �54� in a three-dimensional �3D� cube with
periodic boundary conditions using a parallel pseudospectral
code.40,41 We employ a Taylor–Green forcing,42

F = � sin k0x cos k0y cos k0z

− cos k0x sin k0y cos k0z

0
� �62�

�with k0=2�, and employ dynamic control43 to maintain a
nearly constant energy with time. The Taylor–Green forcing
�Eq. �62�� is not a solution of the Euler’s equations, and as a
result small scales are generated rapidly. The resulting flow
models the fluid between counter-rotating cylinders44 and it
has been widely used to study turbulence, including studies
in the context of the generation of magnetic fields through
dynamo instability.45 We define the Taylor microscale as
�=2��v2� / �2�, and the mean velocity fluctuation as
vrms= �2
0

�E�k�dk1/2. The Taylor microscale Reynolds num-
ber is defined by Re�=vrms� /� and the Reynolds number
based on a unit length is Re=vrms /�.

The Clark-�, Leray-�, and LANS-� equations �as well
as other SGS models based on spectral filters� are easy to
implement in spectral or pseudospectral methods. As an
example, in Fourier based pseudospectral methods, the
Helmholtz differential operator can be inverted to obtain

Ĥ−1�k�= �1+�2k2�−1, where the hat denotes Fourier trans-
formed. In this way, the filter reduces to an algebraic opera-
tion, and Eqs. �4�, �36�, and �54� can be solved numerically
at almost no extra cost. If other numerical methods are used,
the inversion can be circumvented for example by expanding
the inverse of the Helmholtz operator into higher orders of
the Laplacian operator.31,46

To compare the three regularizations �Clark-�, Leray-�,
LANS-�� we compute a fully resolved DNS of the Navier–
Stokes equations at a resolution of 10243 ��=3�10−4,
Re�3300� and model runs with the exact same conditions at
a resolution of 3843. The details of the flow dynamics of the
DNS have already been given.8,47 In particular, the Reynolds
number based on the integral scale L�2�
E�k�k−1dk /E
�1.2 �where E is the total energy� is ReL=UL /��3900,
where U is the rms velocity and the Reynolds number based
on the Taylor scale is Re��790. The DNS was run for nine
turnover times �L /U� �in the following results, time t is in
units of the turnover time�. We employ a filter width of
�=2� /13 for which LANS-� exhibits both Navier–Stokes
and LANS-� inertial ranges in the third-order structure
function.34 From these we hope to obtain the behavior of the
models for scales much smaller than �

In Fig. 1, we present the time evolution of the enstrophy
��2� for Leray-� and DNS; � ·�̄� for LANS-� and
Clark-��, which is proportional to the dissipation �=��2�
or �=�� ·�̄� depending on the case�. Also shown is a
well-resolved 5123 DNS of a less turbulent flow ��=1.5
�10−3, Re�1300, Re��490 �cyan online� long-dashed
line�. Here, each run is calculated only until it reaches a

(a)

FIG. 1. �Color online� Time evolution of the enstrophy ��2� for Leray-�
and in the DNS, � ·�̄� for LANS-� and Clark-��. DNS �Re�3300� is
shown as solid black lines, LANS-� as dotted red, Clark-� as dashed green,
and Leray-� as blue dash-dotted. The cyan long-dashed line represents a
5123 DNS �Re�1300, Re��490�. Here each run is calculated only until it
reaches a statistical steady state. Leray-� reduces the dissipation, =��2�,
and increases the time scale to reach a statistical turbulent steady state. Both
effects are greater as � is increased. By comparison with the Re�1300 run,
we see that these two effects are consistent with a reduced effective Rey-
nolds number. A smaller reduction in flux �but not an increase in time to
steady state� is also observed for LANS-� and is likely related to its rigid
bodies.

035107-7 Three regularization models of the Navier–Stokes equations Phys. Fluids 20, 035107 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



statistically steady state. We see that the dissipation is greatly
reduced and the time scale to reach a statistically steady state
is increased for Leray-�. We see by comparison with the
Re�1300 DNS that this reduced dissipation could result
from a reduced effective Reynolds number in the Leray-�
run. For LANS-�, the dissipation is decreased although the
time to reach steady state is not increased. This is probably
related to the enslavement of its rigid body regions which
would have no internal dissipation. Of the three models,
Clark-� most resembles the total dissipation for a large range
of �. Indeed, as it is the order �2 approximation of Navier–
Stokes, this dissipation behavior for Clark-� may continue to
hold until � becomes quite large.

Figure 2 shows a comparison of the energy spectrum at
the turbulent steady state, for all the runs in Fig. 1. The
isotropic energy spectra are calculated as follows:

E�k� = �
keff�k−1/2

keff�k+1/2

vx
2�keff� + vy

2�keff� + vz
2�keff� , �63�

where keff=�kx
2+ky

2+kz
2 �the H1

��u� norm is employed for
Clark-� and LANS-��. The length scale � is indicated by a
vertical dashed line and the plotted energy spectra are com-
pensated by k5/3 �i.e., leading to a flat K41 k−5/3 spectrum�.
The energy flux in the DNS is constant in a wide range of
scales, but the compensated spectrum has a more complex
structure. The salient features of this spectrum are well
known from previous studies.6 Small scales before the dissi-
pative range show the so-called bottleneck effect with a
slope shallower than k−5/3. On the other hand, larger scales
have a tendency to develop a spectrum slightly steeper than
k−5/3 because of intermittency corrections, an effect that be-
comes clear in the simulation performed at larger spatial res-
olution on a grid of 40963 points.6 From Fig. 2 it is clear that
the Clark-� spectral behavior is close to the predicted k−1

spectrum, rather than the k1/3 from Eq. �25�, or the other
possible spectra from Eq. �33�. Likewise, the positive k0.2

LANS-� spectrum observed here approaches k1 with increas-
ing resolution as the subfilter scales are fully resolved.34

Leray-�, on the other hand, possesses a very steep subfilter-
scale spectrum as well as enhanced large-scale energy as has
been previously observed.15 The results indicate that solu-
tions to Leray-� are the most strongly regularized of the
three regularizations.

The spectrum of Leray-� in Fig. 2 gives a good approxi-
mation to the Re�1300 DNS in the range k� �5,20� �i.e., to
�=1.5�10−3 rather than to �=3�10−4, which was em-
ployed�. This result, Leray-�’s increased characteristic time
scales, and its reduced dissipation, imply that the Leray-�
model is operating at a much lower effective Reynolds
number. This is also clear from the rapid drop in the spec-
trum at small scales, shown in Fig. 2. Indeed, we can
build an effective Reynolds number in the large scales as
Reeff=�1/3L4/3 /�. Since L is controlled in this simulation by
the forcing scale, the drop in the dissipation rate implies a
reduced nonlinearity in Leray-�. This is also consistent with
a direct comparison of the nonlinear terms in Leray-� with,
for instance, LANS-�. The nonlinear terms in LANS-�
�Eq. �54�� may be written as u ·�v+�uT ·v �where the suffix
T denotes a transposition�, while the nonlinear term in
Leray-� �Eq. �36�� is only u ·�v. Both nonlinear terms in
LANS-� are of order O�1�, so the absence of one of the
nonlinear terms in Leray-� could be understood as a reduc-
tion in the nonlinearity.

Validation of the de Kármán–Howarth equation scalings
�Eqs. �23� and �48�� enables us to measure scaling laws in the
inertial range and, thus, compare the intermittency properties
of the models. The third-order correlations involved in the
theorems, namely,

L��l� � �
u��l��2�
v��l��� �64�

for Clark-� and LANS-�,

LL�l� � �
v��l��2�
u��l��� �65�

for Leray-�, and L�l��S3
v�l� for Navier–Stokes, are plotted

versus l in Fig. 3. In Fig. 3 we can see validation of the de

FIG. 2. �Color online� Spectra compensated by K41 for 10243 DNS
�Re�3300� averaged over t= �8.25,9�. Labels are as in Fig. 1. The vertical
dashed line indicates k��2� /�. Compensated spectra for 3843 LANS-�
averaged over t� �10.8,11.6�, for 3843 Clark-� over t� �11.8,12.6�, for
3843 Leray-� over t� �26.3,27�, and for the Re�1300 DNS over
t� �18.1,18.9�. Due to the large disparity in times to reach a turbulent
steady state, the time intervals chosen to average over also differ greatly.
Clark-� approximates the predicted k−1 spectrum �Eq. �24�� and not k1/3 �Eq.
�25�� nor other possible spectra �Eq. �33��. The spectrum of Leray-� is very
similar �for k� �5,20�� to that of the Re�1300 DNS. The positive but
shallower than k1 LANS-� spectrum observed here has previously been
reported �see text�. The spectra of all three regularizations clearly differ
from that of Navier–Stokes.

FIG. 3. �Color online� Third-order structure function associated with the de
Kármán–Howarth equation L��,L��l� vs length l. Labels are as in Fig. 1. The
vertical dashed lines indicate the length �. The Clark-� result is consistent
with a u2v� l1 scaling �Eq. �23��, and clearly inconsistent with a u2v� l−1

�u3� l� scaling as would arise from the middle term in Eq. �20�. The results
for Leray-� are again consistent with a reduced effective Re.
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Kármán–Howarth scaling for scales smaller than � for both
LANS-� and Clark-�. In particular, we note the observed
scaling for Clark-� verifies the vu2� l scaling and not the
�theoretically possible� vu2� l−1 �u3� l� scaling. The pre-
dicted scaling is not observed in Leray due to its reduced
effective Reynolds number. With these scalings in hand, we
may proceed to observe the scaling of the longitudinal struc-
ture functions,

Sp
v�l� � �
v�

2�p/2� , �66�

where we again replace the H�
1 norm, i.e., �
v���
u���, for the

L2 norm, i.e., �
v��2�, in the case of Clark-� and LANS-�.
We utilize the extended self-similarity hypothesis,48–50 which
proposes the scaling

Sp
v�l� � �L��,L��l���p,

and normalize the results by �3 to better visualize the devia-
tion from linearity �which serves as a measure of intermit-
tency�. As we will show in the next section, our flow is
anisotropic in the z direction. Therefore, structure functions
are computed in horizontal planes only. The results are dis-
played in Fig. 4.

In Fig. 4, we may observe the intermittency properties of
the models at subfilter scales. We note a reduced intermit-
tency for both Leray-� and the Re�1300 DNS. This is con-
sistent with the smoother, more laminar fields �due to the
reduction of the effective Re� possessed by both. Interest-
ingly, though LANS-� and Clark-� both possess the same
cascade scaling �Eq. �23�, as confirmed in Fig. 3�, the
Clark-� model is markedly more intermittent than LANS-�.
If artificially truncated local interactions �in spectral space� is
taken as a cause of enhanced intermittency,51,52 then the in-
creased intermittency observed in Clark-� is the expected
result of truncation of the higher-order terms in the subfilter-
stress tensor. Moreover, if the LANS-�’s �k1 spectrum is
indeed associated with rigid bodies, these would serve to
decrease the intermittency �no internal degrees of freedom

being available in a rigid body�, which is consistent with the
results shown here. Due to this effect, LANS-� of the three
regularization models most resembles the high-order inter-
mittency of Navier–Stokes at subfilter scales.

IV. SGS POTENTIAL OF THE REGULARIZATIONS

A. Reproduction of superfilter-scale properties

The differences at subfilter scales between the regular-
izations and Navier–Stokes are important to understand how
the models may be improved upon. From a practical stand-
point, an equally important question is how they predict the
superfilter-scale properties of a DNS when employed as
models. This gives an indication of their SGS modeling po-
tential. For this, we choose �=2� /40 corresponding to an
optimal �-LES.34 Note that the value of � has been opti-
mized for neither Clark-� nor Leray-�; as a consequence,
these models might perform better in other parameter re-
gimes than the results indicate in this study.

Figure 5 gives the time evolution of the enstrophy of the
DNS and the models along with that of an under-resolved
Navier–Stokes solution at a resolution of 3843 ��=3�10−4,
�pink online� dash-triple-dotted line�. We see that both
LANS-� and Clark-� reproduce the proper amount of dissi-
pation and are within 10% of the time required by the DNS
to reach a statistical turbulent steady state. As has been ob-
served before, Leray-� is under-dissipative.15 We also note
that it takes longer than the other models to reach a steady
state even with the smaller filter width �2� /40, as opposed to
2� /13�. When compared to the larger � case, we see that the
dissipation is much greater and the time scale to reach a
turbulent steady state is decreased for Leray-�.

Compensated spectra averaged over several eddy turn-
over times are shown for the SGS case �i.e., k�=40� in Fig.
6. Note that as the subgrid models are averaged over a dif-
ferent time interval, no meaningful comparison to the DNS is
possible for k�kF=3. Even without an optimal choice for
the value of �, Clark-� best reproduces the DNS spectrum
for scales larger than �. We compute root-mean-square spec-
tral errors as recently introduced in Ref. 35,

FIG. 4. �Color online� Normalized structure function scaling exponent �p /�3

vs order p. The dashed line indicates K41 scaling and the solid line the
She–Lévêque formula �Ref. 53�. The DNS results are indicated by black
X’s, LANS-� by red asterisks, Clark-� by green diamonds, Leray-� by blue
triangles, and the Re�1300 DNS results are shown by cyan pluses. Leray-
� is less intermittent consistent with the smoother field produced by a lower
Re flow. Clark-� is more intermittent than Navier–Stokes at subfilter scales.
LANS-� is less intermittent than Clark-�, likely due to the influence of its
rigid bodies �see text�.

FIG. 5. �Color online� Time evolution of the enstrophy ��2� for Leray-�
and in the DNS, � ·�̄� for LANS-� and Clark-��. DNS �Re�3300� is
shown as solid black lines, LANS-� as dotted red, Clark-� as dashed green,
and Leray-� as blue dash-dotted. An under-resolved �3843� Navier–Stokes
run is shown as a pink dash-triple-dotted line.
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�p
b = ��k=kF

k� k2p�Emodel�k� − E�k��2

�k=kF

k� k2pE2�k� �1/2

, �67�

where kF is the wavenumber for the forcing scale, E�k� is the
DNS spectrum �in the L2�v� norm�, and Emodel�k� is the sub-
grid model spectrum �in the appropriate norm�. Another mea-
sure introduced in Ref. 35 is given by

�p
a = ���k=kF

k� kp�Emodel�k� − E�k���2

��k=kF

k� kpE�k��2 �1/2

. �68�

With p=0, we find the error in the total energy; i.e., �0
a��E.

As this is dynamically controlled in our experiment, we find
zero in all cases. For p=2, we find the error in the total
dissipation, i.e., �2

a��, which is observed in Fig. 5. Every
deviation from the DNS spectrum is counted positive, how-
ever, in �p

b. For p=0, we find the error in the energy
spectrum: In decreasing order, �0

b=0.24 for Leray-�, 0.23 for
the under-resolved 3843, 0.20 for LANS-�, and 0.16 for
Clark-�. Both LANS-� and Clark-� improve the estimate
over the under-resolved run, but Clark-� makes the best pre-
diction. We see that only Clark-� improves the estimate of
the power spectrum at this resolution for each scale consid-
ered separately �see Fig. 6�. Leray-� performs the poorest of
the three regularization models, but it is also not optimized.
As previously argued, its effective Reynolds number is too
low to accurately model the DNS flow. Either a decrease in

the viscosity �, or a decrease in the filter size � �and, hence,
an increase in the nonlinearity�, or both would likely im-
prove the accuracy of Leray-� as an SGS model. Due to its
frozen-in �or enslaved� rigid-body regions and its conserva-
tion of total energy, the LANS-� model cannot reproduce the
DNS spectrum at superfilter scales unless � is only a few
times larger than the dissipation scale.34

Another measure of the success of a subgrid model is the
reproduction of structures in the flow. In Fig. 7 we have 3D
volume rendering of the enstrophy density �2 �� ·�̄ for
LANS-� and Clark-�� for the DNS, the three SGS-model
simulations �k�=40�, the 3843 under-resolved Navier–Stokes
solution, all at a Reynolds number of �3300, and the
Re�1300 DNS. Due to the late times depicted �longer than
a Lyapunov time� there can be no point-by-point comparison
between the simulations. Instead, we note that there are four
horizontal bands where the forcing causes a maximum shear.
This large-scale feature of the flow is missing only from
Leray-� and the Re�1300 run. The three other runs repro-
duce this feature well �note that the apparently thicker tubes
present in Clark-� are vortex tube mergers�. The results lead
again to the conclusion that the under-resolved Navier–
Stokes, the Clark-�, and the LANS-� models are better sub-
grid models than Leray-� due to its reduced effective Re.

For the SGS models, the predicted l1 from the de
Kármán–Howarth theorem for Navier–Stokes is well repro-
duced by all models at superfilter scales �not depicted here�.
We may then proceed in Fig. 8 to analyze the SGS model
intermittency results. We see that all models reproduce the
intermittency up to the tenth-order moment within the error
bars �although there is a small decrease in intermittency for
Leray-��. Thus, we conclude that with adequately chosen
values of � �and of � for Leray-��, all three models can
reproduce the intermittency of the DNS �to within the error
bars�.

The subfilter-scale physics of Leray-� shows that it pos-
sesses the smoothest solutions of the three models and re-
duces the effective Re. We have seen that this strongly ham-
pers its effectiveness as a SGS model. “Rigid bodies” are
observed in the subfilter scales of LANS-� �Ref. 34� that
strongly influence even the superfilter-scale energy spectrum
but not the subfilter-scale dissipation nor intermittency prop-
erties. These affects also carry over to its application as a
SGS model in that very small filter widths are required to
properly predict the large-scale spectrum. Clark-�’s approxi-
mately k−1 subfilter energy spectrum is the closest to k−5/3 of
the three models and is seen to cause the least contamination
of the superfilter-scale spectrum when employed as a SGS
model. Finally, when the filter width is small enough, the
enhanced intermittency of Clark-� is nearly eliminated.

B. Computational gains

The rationale behind using a SGS model is that it leads
to adequate solutions at a reduced computational cost, be-
cause it computes fewer dof; indeed, for an SGS model, the
ratio of Navier–Stokes’s dof to the model’s dof, a prediction
for memory savings and hence computation time savings for

FIG. 6. �Color online� Spectra compensated by K41 for 10243 DNS
�Re�3300� averaged over t= �8.25,9�. Labels are as in Fig. 5. The wave-
number corresponding to the filter width k� is shown as a vertical dashed
line. 3843 simulations are averaged over t� �15,20�. Note that to make a
comparison for most wavenumbers, the spectra must be averaged within a
turbulent steady state. Therefore, as the subgrid models are averaged over a
different time interval, there is no meaningful comparison to the DNS for
k�3. For LANS-�, we observe a contamination of the superfilter-scale
spectrum �at k� �9,30�� related to the steep subfilter-scale spectrum and the
conservation of energy. Even though a different � �optimized with respect to
spectral energy prediction at this numerical resolution� may provide better
results for Clark-�, this model does very well at reproducing the large-scale
energy spectrum. Leray-�’s performance is the poorest.
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numerical simulation, is a crucial factor. Consequently, ana-
lytical bounds on the sizes of the attractors for the three
regularization subgrid models may be useful indicators of
their computational savings. The dof for LANS-� is derived
in Ref. 29 and confirmed in Ref. 34,

dof� �
L

�
Re3/2, �69�

where L is the integral scale �or domain size�. We may com-
pare this to the dof for Navier–Stokes,

FIG. 7. �Color online� Volume rendering of the enstrophy density �2 �� ·�̄ for LANS-� and Clark-��. The four lengths depicted are integral length scale L,
Taylor scale �, filter width �, and dissipative scale �K as calculated separately for each simulation. First row, first column: Re�3300 DNS. Second row, first
column: Clark-�. First row, second column: LANS-�. Second row, second column: Under-resolved Navier–Stokes. For the first two rows, the snapshot is for
t=9. Third row, first column: Leray-� for t=16. Third row, second column: Re�1300 DNS for t=19, corresponding to their slower development of
turbulence. For Leray-�, the locations of vortex tubes are consistent with a lower Re flow, while the other models �including under-resolving� reproduce the
large-scale pattern of the flow well. The color scale indicates the strength of the enstrophy density, with dark grey shades �purple online� stronger than light
grey shades �green online�.
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dofNS � � L

�K
�3

� Re9/4, �70�

which immediately yields

dofNS

dof�

� ��

L
�Re3/4. �71�

It was found, however, that to reproduce the superfilter-scale
energy spectrum of an equivalent DNS, the filter width �
must be no larger than a few times the dissipation scale �K.34

This is the result of the “polymerization” of the flow in
LANS-�, and the associated E�k��k1 scaling at subfilter
scales and consequent contamination at superfilter scales via
energy conservation. With this added caveat, it follows that
the reduction in dof is independent of Re �and a net factor of
about 10�. Our study here illustrates that the high-order
structure functions may be reproduced for much larger val-
ues of �. Therefore, in applications where the spectrum is
not of great concern, much greater reduction in numerical
resolution would be feasible.

For Clark-� there is an upper bound on the Hausdorff
�dH� and fractal �dF� dimensions of the attractor,

dH � dF � C� L

�K
C�3�L

�
�3/4

, �72�

where �K
C is the Kolmogorov dissipation length scale corre-

sponding to the Clark-� model.21 From its observed k−1

spectrum, we may estimate �K
C or, equivalently, k�

C�1 /�K
C.

For dissipation the large wavenumbers dominate and, there-
fore, combining the Clark-� energy balance Eq. �6� with its
subfilter scale energy spectrum Eq. �24� allows us to implic-
itly specify its dissipation wavenumber k�

C by

�
C

�
� �k�

C

k2E�
C�k�dk

� �k�
C

k2��
C�2/3�2/3k−1dk

� ��
C�2/3�2/3�k�

C�2. �73�

We then have

k�
C �

��
C�1/6

�1/2�1/3 . �74�

It follows that

dofNS

dofClark
� Re3/4��

L
�3/4

�−1. �75�

This is similar to the prediction for LANS-�, but as energy
spectra are more easily reproduced for larger values of �
than with LANS-� �but not the intermittency properties�, it
may be the case that � is not tied to the Kolmogorov dissi-
pation scale �K. If so, then the computational saving might
increase as Re3/4, which is promising for use of Clark-� as
an LES model. This conclusion is bolstered to the extent that
the results in Sec. IV A for k�=40 ���7�K� are acceptable.
If even further separation from the dissipative scale is not
possible, there is still a greater reduction in dof �a factor of
20� for Clark-� than for LANS-�.

For Leray-�, we have the following upper bounds on the
Hausdorff dimension �dH� and fractal dimension �dF� of the
global attractor,

dH � dF � c� L

�K
L �12/7�1 +

L

�
�9/14

, �76�

where �K
L is the dissipation length scale for Leray-�.14

Again, we estimate the dissipation wavenumber for Leray-�
k�

L�1 /�K
L. From Eqs. �38� and �49�, that is, assuming the

k−1/3 spectrum resulting from the de Kármán–Howarth equa-
tion, we find

L

�L
� �k�

L

k2EL�k�dk

� �k�
L

k2�L�2/3�4/3k−1/3dk

� �L�2/3�4/3�k�
L�8/3. �77�

Consequently we have

k�
L �

�L�1/8

�L
3/8�1/2 . �78�

It follows that

dofNS

dofLeray
�

L9/7�−9/4

�L
−9/14�−6/7�1 +

L

�
�9/14 . �79�

Our results suggest that for an effective LES the viscosity �L

must be chosen to be smaller than �. This leads to an upper
bound on the computational savings for Leray-�,

FIG. 8. �Color online� Normalized structure function scaling exponent �p /�3

vs order p. The dashed line indicates K41 scaling and the solid line the
She-Lévêque formula �Ref. 53�. The DNS results are indicated by black �
marks. LANS-� by red asterisks, Clark-� by green diamonds, Leray-� by
blue triangles, and pink boxes for the under-resolved Navier–Stokes run.
With a small enough filter-width �, the intermittency properties of the DNS
can be reproduced with all three models.
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dofNS

dofLeray
� C

Re45/28�6/7

�1 +
L

�
�9/14 . �80�

If we further assume that � is directly proportional to the
dissipative scale �K, we arrive at

dofNS

dofLeray
� CRe27/56, �81�

which is not exceedingly promising for use as a LES. All
such estimates are, however, purely conjectural until the
proper choices of � and �L are determined.

V. DISCUSSION

We derived the de Kármán–Howarth equations for the
Leray-� and Clark-� models. These two models may be
viewed as successive truncations of the subfilter-scale
stress of the Lagrangian-averaged Navier–Stokes �-model
�LANS-��. In the case of Clark-� two different inertial range
scalings follow from the dimensional analysis of this equa-
tion. The case of Leray-� is simpler as a single scaling is
predicted. This is the case for Navier–Stokes and LANS-�
as well. To our knowledge, we computed the first numerical
solution of the Clark-� model, the results of which are
encouraging for further study. We compared these to solu-
tions for a 10243 DNS under periodic boundary conditions
��=3�10−4, Re�3300� using a 3843 resolution under the
same exact conditions for LANS-�, Leray-�, Clark-�, and
an under-resolved 3843 solution of the Navier–Stokes equa-
tions. We employed two different filter widths �. The first
choice �=2� /13 was used to understand the subfilter-scale
physics and the second choice �=2� /40 was employed to
test the SGS potential of the models. In comparing these two
choices, we found for Leray-� that an increase in � substan-
tially decreases the nonlinearity �and hence decreases the ef-
fective Reynolds number Re�. For this reason, we were un-
able to confirm either the inertial range scaling from its de
Kármán–Howarth equation or its subfilter-scale energy spec-
trum. For Clark-�, we were able to determine the dominant
de Kármán–Howarth inertial range scaling to be u2v� l,
which leads to the associated k−1 energy spectrum, also indi-
cated by our results.

The performance of the three regularizations as SGS
models �for a resolution of 3843 and k�=40� was comparable
to that of the under-resolved Navier–Stokes solution in re-
producing the DNS energy spectrum at superfilter scales.
Only Clark-� showed a clear improvement in approximating
the spectrum. From 3D volume rendering of enstrophy den-
sity, we found that Clark-� and LANS-� were comparable to
the under-resolved solution. Even at �=2� /40, Leray-�’s
3D spatial structures are consistent with a significantly re-
duced Re flow �e.g., comparable to a Re�1300 DNS�. We
note that the value of � was chosen optimally for LANS-� at
the resolution of 3843, and that for Clark-� �and especially
for Leray-�� smaller resolutions �greater computational sav-
ings� may have comparable results for this value of �. Such
a comparison is beyond the scope of the present work.

Although LANS-� and Clark-� exhibit the same inertial
range scaling arising from similarities in their de Kármán–
Howarth equations, Clark-� is decidedly more intermittent
than Navier–Stokes at subfilter scales. At the same time,
LANS-� is only slightly more intermittent than Navier–
Stokes. These results are consistent with the artificial trunca-
tion of local nonlinear interactions �in spectral space� in the
SGS stress tensor of each model. This effect is reduced for
LANS-� by the “rigid-body regions” enslaved in its larger
scale flow which possess no internal degrees of freedom. The
reduced intermittency observed for Leray-� is related to its
smoother, more laminar fields as a result of its reduced ef-
fective Re.

Finally, we analyzed the reduction in the number of dof
in the models, as compared to Navier–Stokes �and, hence,
their LES potential based on their computational savings�.
We noted that as LANS-� reproduces the intermittency prop-
erties of a DNS quite well even for larger values of �, some
further reduction in numerical saving might be achieved pro-
vided the contamination due to its k1 rigid-body energy spec-
trum were not important in a given application. As Clark-�
possesses a similar reduction in dof to LANS-�, its LES
potential is tied to the optimal value of � for LES. Our study
indicates that Clark-� may be applicable �especially with
regards to the energy spectrum� for larger values of � than
LANS-�. In fact, if its optimal value is not a function of Re,
the computational resolution savings increases as Re3/4 for
Clark-�. For the case of Leray-�, the prediction is compli-
cated by the effective reduction in Re as � increases. Predic-
tion of optimized values of � and of effective dissipation �L

are required to assess its LES potential. Future work should
include such a study for both Leray-� and Clark-�.

All three regularizations were shown to be successful, in
that their control of the flow gradient reduces the degrees of
freedom and saves computation while preserving a properly
defined Reynolds number �albeit for Leray-� that definition
is not yet demonstrated�. Clark-� accurately reproduces the
total dissipation, the time scale to obtain a turbulent statisti-
cal steady state, and the large-scale energy spectrum of a
DNS. These results seem to result from Clark-� being an
order �2 approximation of Navier–Stokes. We have shown
that Leray-� reduces the effective Reynolds number of the
flow. The last of the three models, LANS-� restores Kelvin’s
circulation theorem �advected by a smoothed velocity� and
the conservation of a form of helicity. Using spectra as a
measure of the success of a subgrid model, LANS-� is less
than optimal, due to its contamination of the superfilter-scale
spectrum. However, other measures of the success of a sub-
grid model are possible: For example, in regard to intermit-
tency, LANS-� may be considered a superior model. For
Clark-�, intermittency may be a function of filter width
while for LANS-�, intermittency does not vary much with �.

Through examination of these three systems of nonlinear
partial differential equations in comparison to Navier–
Stokes, we have demonstrated that intermittency can be pre-
served with careful modification of the nonlinearity. This
was seen with the LANS-� model and may be related to the
conservation of small-scale circulation. Besides intermit-
tency, the nonlinear terms also play a role in the energy spec-
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trum �at both subfilter and superfilter scales� and in the dis-
sipation. These terms must model both the nonlocal
interactions �to recover the intermittency� but also the local
interactions �which are too strongly suppressed inside the
rigid bodies of LANS-��. Finally, we have demonstrated that
regularization modeling can be employed to reduce the com-
putational cost while preserving the high-order statistics of
the flow.

We remark that the computational gain thus far achieved
by any of these regularizations is insufficient for applications
at very high Reynolds numbers, and the three subgrid stress
tensors discussed here may need to be supplemented with an
enhanced effective viscosity to be employed as LES. This is
a common practice when implementing the Clark model
�see, e.g., Ref. 19 for a study of this model with an extra
Smagorinsky term�. In this light, the present study may be
useful as an analysis of the properties of the SGS tensors of
the regularizations, and to pick best candidates, before the
addition of enhanced dissipation. Studies similar to that in
Ref. 34 will also need to be done for the cases of Clark-�
and Leray-� to quantify their computational savings before
the addition of such dissipative terms.
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